Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
Make use of GCF Calculator to quickly find the Greatest Common Factor of numbers 7347, 7354 i.e. 1 largest integer by which both the numbers can be divided.
Greatest common factor (GCF) of 7347 and 7354 is 1.
GCF(7347,7354) = 1
Greatest common factor or Greatest common divisor (GCD) can be calculated in following way;
Prime Factorization of 7347
3 | 7347 |
31 | 2449 |
79 | 79 |
1 |
Prime factors of 7347 are 3,31,79. Prime factorization of 7347 in exponential form is:
7347 = 31×311×791
Prime Factorization of 7354
2 | 7354 |
3677 | 3677 |
1 |
Prime factors of 7354 are 2,3677. Prime factorization of 7354 in exponential form is:
7354 = 21×36771
∴ So by taking common prime factors GCF of 7347 and 7354 is 1
Factors of 7347
List of positive integer factors of 7347 that divides 7347 without a remainder.
1,3,31,79,93,237,2449,7347
Factors of 7354
List of positive integer factors of 7354 that divides 7354 without a remainder.
1,2,3677,7354
Greatest Common Factor
We found the factors and prime factorization of 7347 and 7354. The biggest common factor number is the GCF number.
So the greatest common factor 7347 and 7354 is 1.
Also check out the Least Common Multiple of 7347 and 7354
(i) The GCF of 7347 and 7354 is associative
GCF of 7347 and 7354 = GCF of 7354 and 7347
1. What is the GCF of 7347 and 7354?
Answer: GCF of 7347 and 7354 is 1.
2. What are the Factors of 7347?
Answer: Factors of 7347 are 1, 3, 31, 79, 93, 237, 2449, 7347. There are 8 integers that are factors of 7347. The greatest factor of 7347 is 7347.
3. What are the Factors of 7354?
Answer: Factors of 7354 are 1, 2, 3677, 7354. There are 4 integers that are factors of 7354. The greatest factor of 7354 is 7354.
4. How to Find the GCF of 7347 and 7354?
Answer:
Greatest Common Factor of 7347 and 7354 = 1
Step 1: Find the prime factorization of 7347
7347 = 3 x 31 x 79
Step 2: Find the prime factorization of 7354
7354 = 2 x 3677
Step 3: Multiply those factors both numbers have in common in steps i) or ii) above to find the gcf:
GCF = = 1
Step 4: Therefore, the greatest common factor of 7347 and 7354 is 1