Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
Make use of GCF Calculator to quickly find the Greatest Common Factor of numbers 9142, 9147 i.e. 1 largest integer by which both the numbers can be divided.
Greatest common factor (GCF) of 9142 and 9147 is 1.
GCF(9142,9147) = 1
Greatest common factor or Greatest common divisor (GCD) can be calculated in following way;
Prime Factorization of 9142
2 | 9142 |
7 | 4571 |
653 | 653 |
1 |
Prime factors of 9142 are 2,7,653. Prime factorization of 9142 in exponential form is:
9142 = 21×71×6531
Prime Factorization of 9147
3 | 9147 |
3049 | 3049 |
1 |
Prime factors of 9147 are 3,3049. Prime factorization of 9147 in exponential form is:
9147 = 31×30491
∴ So by taking common prime factors GCF of 9142 and 9147 is 1
Factors of 9142
List of positive integer factors of 9142 that divides 9142 without a remainder.
1,2,7,14,653,1306,4571,9142
Factors of 9147
List of positive integer factors of 9147 that divides 9147 without a remainder.
1,3,3049,9147
Greatest Common Factor
We found the factors and prime factorization of 9142 and 9147. The biggest common factor number is the GCF number.
So the greatest common factor 9142 and 9147 is 1.
Also check out the Least Common Multiple of 9142 and 9147
(i) The GCF of 9142 and 9147 is associative
GCF of 9142 and 9147 = GCF of 9147 and 9142
1. What is the GCF of 9142 and 9147?
Answer: GCF of 9142 and 9147 is 1.
2. What are the Factors of 9142?
Answer: Factors of 9142 are 1, 2, 7, 14, 653, 1306, 4571, 9142. There are 8 integers that are factors of 9142. The greatest factor of 9142 is 9142.
3. What are the Factors of 9147?
Answer: Factors of 9147 are 1, 3, 3049, 9147. There are 4 integers that are factors of 9147. The greatest factor of 9147 is 9147.
4. How to Find the GCF of 9142 and 9147?
Answer:
Greatest Common Factor of 9142 and 9147 = 1
Step 1: Find the prime factorization of 9142
9142 = 2 x 7 x 653
Step 2: Find the prime factorization of 9147
9147 = 3 x 3049
Step 3: Multiply those factors both numbers have in common in steps i) or ii) above to find the gcf:
GCF = = 1
Step 4: Therefore, the greatest common factor of 9142 and 9147 is 1