Highest Common Factor of 1133, 1428 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 1133, 1428 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 1133, 1428 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 1133, 1428 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 1133, 1428 is 1.

HCF(1133, 1428) = 1

HCF of 1133, 1428 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 1133, 1428 is 1.

Highest Common Factor of 1133,1428 using Euclid's algorithm

Highest Common Factor of 1133,1428 is 1

Step 1: Since 1428 > 1133, we apply the division lemma to 1428 and 1133, to get

1428 = 1133 x 1 + 295

Step 2: Since the reminder 1133 ≠ 0, we apply division lemma to 295 and 1133, to get

1133 = 295 x 3 + 248

Step 3: We consider the new divisor 295 and the new remainder 248, and apply the division lemma to get

295 = 248 x 1 + 47

We consider the new divisor 248 and the new remainder 47,and apply the division lemma to get

248 = 47 x 5 + 13

We consider the new divisor 47 and the new remainder 13,and apply the division lemma to get

47 = 13 x 3 + 8

We consider the new divisor 13 and the new remainder 8,and apply the division lemma to get

13 = 8 x 1 + 5

We consider the new divisor 8 and the new remainder 5,and apply the division lemma to get

8 = 5 x 1 + 3

We consider the new divisor 5 and the new remainder 3,and apply the division lemma to get

5 = 3 x 1 + 2

We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get

3 = 2 x 1 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1133 and 1428 is 1

Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(5,3) = HCF(8,5) = HCF(13,8) = HCF(47,13) = HCF(248,47) = HCF(295,248) = HCF(1133,295) = HCF(1428,1133) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 1133, 1428 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 1133, 1428?

Answer: HCF of 1133, 1428 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 1133, 1428 using Euclid's Algorithm?

Answer: For arbitrary numbers 1133, 1428 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.