Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 115, 786 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 115, 786 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 115, 786 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 115, 786 is 1.
HCF(115, 786) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 115, 786 is 1.
Step 1: Since 786 > 115, we apply the division lemma to 786 and 115, to get
786 = 115 x 6 + 96
Step 2: Since the reminder 115 ≠ 0, we apply division lemma to 96 and 115, to get
115 = 96 x 1 + 19
Step 3: We consider the new divisor 96 and the new remainder 19, and apply the division lemma to get
96 = 19 x 5 + 1
We consider the new divisor 19 and the new remainder 1, and apply the division lemma to get
19 = 1 x 19 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 115 and 786 is 1
Notice that 1 = HCF(19,1) = HCF(96,19) = HCF(115,96) = HCF(786,115) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 115, 786?
Answer: HCF of 115, 786 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 115, 786 using Euclid's Algorithm?
Answer: For arbitrary numbers 115, 786 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.