Highest Common Factor of 1151, 1910 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 1151, 1910 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 1151, 1910 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 1151, 1910 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 1151, 1910 is 1.

HCF(1151, 1910) = 1

HCF of 1151, 1910 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 1151, 1910 is 1.

Highest Common Factor of 1151,1910 using Euclid's algorithm

Highest Common Factor of 1151,1910 is 1

Step 1: Since 1910 > 1151, we apply the division lemma to 1910 and 1151, to get

1910 = 1151 x 1 + 759

Step 2: Since the reminder 1151 ≠ 0, we apply division lemma to 759 and 1151, to get

1151 = 759 x 1 + 392

Step 3: We consider the new divisor 759 and the new remainder 392, and apply the division lemma to get

759 = 392 x 1 + 367

We consider the new divisor 392 and the new remainder 367,and apply the division lemma to get

392 = 367 x 1 + 25

We consider the new divisor 367 and the new remainder 25,and apply the division lemma to get

367 = 25 x 14 + 17

We consider the new divisor 25 and the new remainder 17,and apply the division lemma to get

25 = 17 x 1 + 8

We consider the new divisor 17 and the new remainder 8,and apply the division lemma to get

17 = 8 x 2 + 1

We consider the new divisor 8 and the new remainder 1,and apply the division lemma to get

8 = 1 x 8 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1151 and 1910 is 1

Notice that 1 = HCF(8,1) = HCF(17,8) = HCF(25,17) = HCF(367,25) = HCF(392,367) = HCF(759,392) = HCF(1151,759) = HCF(1910,1151) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 1151, 1910 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 1151, 1910?

Answer: HCF of 1151, 1910 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 1151, 1910 using Euclid's Algorithm?

Answer: For arbitrary numbers 1151, 1910 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.