Highest Common Factor of 12, 37, 32, 138 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 12, 37, 32, 138 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 12, 37, 32, 138 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 12, 37, 32, 138 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 12, 37, 32, 138 is 1.

HCF(12, 37, 32, 138) = 1

HCF of 12, 37, 32, 138 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 12, 37, 32, 138 is 1.

Highest Common Factor of 12,37,32,138 using Euclid's algorithm

Highest Common Factor of 12,37,32,138 is 1

Step 1: Since 37 > 12, we apply the division lemma to 37 and 12, to get

37 = 12 x 3 + 1

Step 2: Since the reminder 12 ≠ 0, we apply division lemma to 1 and 12, to get

12 = 1 x 12 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 12 and 37 is 1

Notice that 1 = HCF(12,1) = HCF(37,12) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 32 > 1, we apply the division lemma to 32 and 1, to get

32 = 1 x 32 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 32 is 1

Notice that 1 = HCF(32,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 138 > 1, we apply the division lemma to 138 and 1, to get

138 = 1 x 138 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 138 is 1

Notice that 1 = HCF(138,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 12, 37, 32, 138 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 12, 37, 32, 138?

Answer: HCF of 12, 37, 32, 138 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 12, 37, 32, 138 using Euclid's Algorithm?

Answer: For arbitrary numbers 12, 37, 32, 138 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.