Highest Common Factor of 1202, 9318, 89516 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 1202, 9318, 89516 i.e. 2 the largest integer that leaves a remainder zero for all numbers.

HCF of 1202, 9318, 89516 is 2 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 1202, 9318, 89516 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 1202, 9318, 89516 is 2.

HCF(1202, 9318, 89516) = 2

HCF of 1202, 9318, 89516 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 1202, 9318, 89516 is 2.

Highest Common Factor of 1202,9318,89516 using Euclid's algorithm

Highest Common Factor of 1202,9318,89516 is 2

Step 1: Since 9318 > 1202, we apply the division lemma to 9318 and 1202, to get

9318 = 1202 x 7 + 904

Step 2: Since the reminder 1202 ≠ 0, we apply division lemma to 904 and 1202, to get

1202 = 904 x 1 + 298

Step 3: We consider the new divisor 904 and the new remainder 298, and apply the division lemma to get

904 = 298 x 3 + 10

We consider the new divisor 298 and the new remainder 10,and apply the division lemma to get

298 = 10 x 29 + 8

We consider the new divisor 10 and the new remainder 8,and apply the division lemma to get

10 = 8 x 1 + 2

We consider the new divisor 8 and the new remainder 2,and apply the division lemma to get

8 = 2 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 1202 and 9318 is 2

Notice that 2 = HCF(8,2) = HCF(10,8) = HCF(298,10) = HCF(904,298) = HCF(1202,904) = HCF(9318,1202) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 89516 > 2, we apply the division lemma to 89516 and 2, to get

89516 = 2 x 44758 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 2 and 89516 is 2

Notice that 2 = HCF(89516,2) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 1202, 9318, 89516 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 1202, 9318, 89516?

Answer: HCF of 1202, 9318, 89516 is 2 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 1202, 9318, 89516 using Euclid's Algorithm?

Answer: For arbitrary numbers 1202, 9318, 89516 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.