Highest Common Factor of 1236, 3492, 46481 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 1236, 3492, 46481 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 1236, 3492, 46481 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 1236, 3492, 46481 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 1236, 3492, 46481 is 1.

HCF(1236, 3492, 46481) = 1

HCF of 1236, 3492, 46481 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 1236, 3492, 46481 is 1.

Highest Common Factor of 1236,3492,46481 using Euclid's algorithm

Highest Common Factor of 1236,3492,46481 is 1

Step 1: Since 3492 > 1236, we apply the division lemma to 3492 and 1236, to get

3492 = 1236 x 2 + 1020

Step 2: Since the reminder 1236 ≠ 0, we apply division lemma to 1020 and 1236, to get

1236 = 1020 x 1 + 216

Step 3: We consider the new divisor 1020 and the new remainder 216, and apply the division lemma to get

1020 = 216 x 4 + 156

We consider the new divisor 216 and the new remainder 156,and apply the division lemma to get

216 = 156 x 1 + 60

We consider the new divisor 156 and the new remainder 60,and apply the division lemma to get

156 = 60 x 2 + 36

We consider the new divisor 60 and the new remainder 36,and apply the division lemma to get

60 = 36 x 1 + 24

We consider the new divisor 36 and the new remainder 24,and apply the division lemma to get

36 = 24 x 1 + 12

We consider the new divisor 24 and the new remainder 12,and apply the division lemma to get

24 = 12 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 12, the HCF of 1236 and 3492 is 12

Notice that 12 = HCF(24,12) = HCF(36,24) = HCF(60,36) = HCF(156,60) = HCF(216,156) = HCF(1020,216) = HCF(1236,1020) = HCF(3492,1236) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 46481 > 12, we apply the division lemma to 46481 and 12, to get

46481 = 12 x 3873 + 5

Step 2: Since the reminder 12 ≠ 0, we apply division lemma to 5 and 12, to get

12 = 5 x 2 + 2

Step 3: We consider the new divisor 5 and the new remainder 2, and apply the division lemma to get

5 = 2 x 2 + 1

We consider the new divisor 2 and the new remainder 1, and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 12 and 46481 is 1

Notice that 1 = HCF(2,1) = HCF(5,2) = HCF(12,5) = HCF(46481,12) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 1236, 3492, 46481 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 1236, 3492, 46481?

Answer: HCF of 1236, 3492, 46481 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 1236, 3492, 46481 using Euclid's Algorithm?

Answer: For arbitrary numbers 1236, 3492, 46481 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.