Highest Common Factor of 127, 362, 186, 77 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 127, 362, 186, 77 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 127, 362, 186, 77 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 127, 362, 186, 77 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 127, 362, 186, 77 is 1.

HCF(127, 362, 186, 77) = 1

HCF of 127, 362, 186, 77 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 127, 362, 186, 77 is 1.

Highest Common Factor of 127,362,186,77 using Euclid's algorithm

Highest Common Factor of 127,362,186,77 is 1

Step 1: Since 362 > 127, we apply the division lemma to 362 and 127, to get

362 = 127 x 2 + 108

Step 2: Since the reminder 127 ≠ 0, we apply division lemma to 108 and 127, to get

127 = 108 x 1 + 19

Step 3: We consider the new divisor 108 and the new remainder 19, and apply the division lemma to get

108 = 19 x 5 + 13

We consider the new divisor 19 and the new remainder 13,and apply the division lemma to get

19 = 13 x 1 + 6

We consider the new divisor 13 and the new remainder 6,and apply the division lemma to get

13 = 6 x 2 + 1

We consider the new divisor 6 and the new remainder 1,and apply the division lemma to get

6 = 1 x 6 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 127 and 362 is 1

Notice that 1 = HCF(6,1) = HCF(13,6) = HCF(19,13) = HCF(108,19) = HCF(127,108) = HCF(362,127) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 186 > 1, we apply the division lemma to 186 and 1, to get

186 = 1 x 186 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 186 is 1

Notice that 1 = HCF(186,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 77 > 1, we apply the division lemma to 77 and 1, to get

77 = 1 x 77 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 77 is 1

Notice that 1 = HCF(77,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 127, 362, 186, 77 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 127, 362, 186, 77?

Answer: HCF of 127, 362, 186, 77 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 127, 362, 186, 77 using Euclid's Algorithm?

Answer: For arbitrary numbers 127, 362, 186, 77 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.