Highest Common Factor of 1278, 2029 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 1278, 2029 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 1278, 2029 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 1278, 2029 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 1278, 2029 is 1.

HCF(1278, 2029) = 1

HCF of 1278, 2029 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 1278, 2029 is 1.

Highest Common Factor of 1278,2029 using Euclid's algorithm

Highest Common Factor of 1278,2029 is 1

Step 1: Since 2029 > 1278, we apply the division lemma to 2029 and 1278, to get

2029 = 1278 x 1 + 751

Step 2: Since the reminder 1278 ≠ 0, we apply division lemma to 751 and 1278, to get

1278 = 751 x 1 + 527

Step 3: We consider the new divisor 751 and the new remainder 527, and apply the division lemma to get

751 = 527 x 1 + 224

We consider the new divisor 527 and the new remainder 224,and apply the division lemma to get

527 = 224 x 2 + 79

We consider the new divisor 224 and the new remainder 79,and apply the division lemma to get

224 = 79 x 2 + 66

We consider the new divisor 79 and the new remainder 66,and apply the division lemma to get

79 = 66 x 1 + 13

We consider the new divisor 66 and the new remainder 13,and apply the division lemma to get

66 = 13 x 5 + 1

We consider the new divisor 13 and the new remainder 1,and apply the division lemma to get

13 = 1 x 13 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1278 and 2029 is 1

Notice that 1 = HCF(13,1) = HCF(66,13) = HCF(79,66) = HCF(224,79) = HCF(527,224) = HCF(751,527) = HCF(1278,751) = HCF(2029,1278) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 1278, 2029 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 1278, 2029?

Answer: HCF of 1278, 2029 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 1278, 2029 using Euclid's Algorithm?

Answer: For arbitrary numbers 1278, 2029 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.