Highest Common Factor of 1318, 6257 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 1318, 6257 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 1318, 6257 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 1318, 6257 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 1318, 6257 is 1.

HCF(1318, 6257) = 1

HCF of 1318, 6257 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 1318, 6257 is 1.

Highest Common Factor of 1318,6257 using Euclid's algorithm

Highest Common Factor of 1318,6257 is 1

Step 1: Since 6257 > 1318, we apply the division lemma to 6257 and 1318, to get

6257 = 1318 x 4 + 985

Step 2: Since the reminder 1318 ≠ 0, we apply division lemma to 985 and 1318, to get

1318 = 985 x 1 + 333

Step 3: We consider the new divisor 985 and the new remainder 333, and apply the division lemma to get

985 = 333 x 2 + 319

We consider the new divisor 333 and the new remainder 319,and apply the division lemma to get

333 = 319 x 1 + 14

We consider the new divisor 319 and the new remainder 14,and apply the division lemma to get

319 = 14 x 22 + 11

We consider the new divisor 14 and the new remainder 11,and apply the division lemma to get

14 = 11 x 1 + 3

We consider the new divisor 11 and the new remainder 3,and apply the division lemma to get

11 = 3 x 3 + 2

We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get

3 = 2 x 1 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1318 and 6257 is 1

Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(11,3) = HCF(14,11) = HCF(319,14) = HCF(333,319) = HCF(985,333) = HCF(1318,985) = HCF(6257,1318) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 1318, 6257 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 1318, 6257?

Answer: HCF of 1318, 6257 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 1318, 6257 using Euclid's Algorithm?

Answer: For arbitrary numbers 1318, 6257 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.