Highest Common Factor of 132, 376, 668, 538 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 132, 376, 668, 538 i.e. 2 the largest integer that leaves a remainder zero for all numbers.

HCF of 132, 376, 668, 538 is 2 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 132, 376, 668, 538 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 132, 376, 668, 538 is 2.

HCF(132, 376, 668, 538) = 2

HCF of 132, 376, 668, 538 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 132, 376, 668, 538 is 2.

Highest Common Factor of 132,376,668,538 using Euclid's algorithm

Highest Common Factor of 132,376,668,538 is 2

Step 1: Since 376 > 132, we apply the division lemma to 376 and 132, to get

376 = 132 x 2 + 112

Step 2: Since the reminder 132 ≠ 0, we apply division lemma to 112 and 132, to get

132 = 112 x 1 + 20

Step 3: We consider the new divisor 112 and the new remainder 20, and apply the division lemma to get

112 = 20 x 5 + 12

We consider the new divisor 20 and the new remainder 12,and apply the division lemma to get

20 = 12 x 1 + 8

We consider the new divisor 12 and the new remainder 8,and apply the division lemma to get

12 = 8 x 1 + 4

We consider the new divisor 8 and the new remainder 4,and apply the division lemma to get

8 = 4 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 4, the HCF of 132 and 376 is 4

Notice that 4 = HCF(8,4) = HCF(12,8) = HCF(20,12) = HCF(112,20) = HCF(132,112) = HCF(376,132) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 668 > 4, we apply the division lemma to 668 and 4, to get

668 = 4 x 167 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 4, the HCF of 4 and 668 is 4

Notice that 4 = HCF(668,4) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 538 > 4, we apply the division lemma to 538 and 4, to get

538 = 4 x 134 + 2

Step 2: Since the reminder 4 ≠ 0, we apply division lemma to 2 and 4, to get

4 = 2 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 4 and 538 is 2

Notice that 2 = HCF(4,2) = HCF(538,4) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 132, 376, 668, 538 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 132, 376, 668, 538?

Answer: HCF of 132, 376, 668, 538 is 2 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 132, 376, 668, 538 using Euclid's Algorithm?

Answer: For arbitrary numbers 132, 376, 668, 538 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.