Highest Common Factor of 137, 9692, 4140 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 137, 9692, 4140 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 137, 9692, 4140 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 137, 9692, 4140 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 137, 9692, 4140 is 1.

HCF(137, 9692, 4140) = 1

HCF of 137, 9692, 4140 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 137, 9692, 4140 is 1.

Highest Common Factor of 137,9692,4140 using Euclid's algorithm

Highest Common Factor of 137,9692,4140 is 1

Step 1: Since 9692 > 137, we apply the division lemma to 9692 and 137, to get

9692 = 137 x 70 + 102

Step 2: Since the reminder 137 ≠ 0, we apply division lemma to 102 and 137, to get

137 = 102 x 1 + 35

Step 3: We consider the new divisor 102 and the new remainder 35, and apply the division lemma to get

102 = 35 x 2 + 32

We consider the new divisor 35 and the new remainder 32,and apply the division lemma to get

35 = 32 x 1 + 3

We consider the new divisor 32 and the new remainder 3,and apply the division lemma to get

32 = 3 x 10 + 2

We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get

3 = 2 x 1 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 137 and 9692 is 1

Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(32,3) = HCF(35,32) = HCF(102,35) = HCF(137,102) = HCF(9692,137) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 4140 > 1, we apply the division lemma to 4140 and 1, to get

4140 = 1 x 4140 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 4140 is 1

Notice that 1 = HCF(4140,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 137, 9692, 4140 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 137, 9692, 4140?

Answer: HCF of 137, 9692, 4140 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 137, 9692, 4140 using Euclid's Algorithm?

Answer: For arbitrary numbers 137, 9692, 4140 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.