Highest Common Factor of 1391, 1890 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 1391, 1890 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 1391, 1890 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 1391, 1890 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 1391, 1890 is 1.

HCF(1391, 1890) = 1

HCF of 1391, 1890 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 1391, 1890 is 1.

Highest Common Factor of 1391,1890 using Euclid's algorithm

Highest Common Factor of 1391,1890 is 1

Step 1: Since 1890 > 1391, we apply the division lemma to 1890 and 1391, to get

1890 = 1391 x 1 + 499

Step 2: Since the reminder 1391 ≠ 0, we apply division lemma to 499 and 1391, to get

1391 = 499 x 2 + 393

Step 3: We consider the new divisor 499 and the new remainder 393, and apply the division lemma to get

499 = 393 x 1 + 106

We consider the new divisor 393 and the new remainder 106,and apply the division lemma to get

393 = 106 x 3 + 75

We consider the new divisor 106 and the new remainder 75,and apply the division lemma to get

106 = 75 x 1 + 31

We consider the new divisor 75 and the new remainder 31,and apply the division lemma to get

75 = 31 x 2 + 13

We consider the new divisor 31 and the new remainder 13,and apply the division lemma to get

31 = 13 x 2 + 5

We consider the new divisor 13 and the new remainder 5,and apply the division lemma to get

13 = 5 x 2 + 3

We consider the new divisor 5 and the new remainder 3,and apply the division lemma to get

5 = 3 x 1 + 2

We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get

3 = 2 x 1 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1391 and 1890 is 1

Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(5,3) = HCF(13,5) = HCF(31,13) = HCF(75,31) = HCF(106,75) = HCF(393,106) = HCF(499,393) = HCF(1391,499) = HCF(1890,1391) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 1391, 1890 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 1391, 1890?

Answer: HCF of 1391, 1890 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 1391, 1890 using Euclid's Algorithm?

Answer: For arbitrary numbers 1391, 1890 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.