Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 1397, 5791 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 1397, 5791 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 1397, 5791 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 1397, 5791 is 1.
HCF(1397, 5791) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 1397, 5791 is 1.
Step 1: Since 5791 > 1397, we apply the division lemma to 5791 and 1397, to get
5791 = 1397 x 4 + 203
Step 2: Since the reminder 1397 ≠ 0, we apply division lemma to 203 and 1397, to get
1397 = 203 x 6 + 179
Step 3: We consider the new divisor 203 and the new remainder 179, and apply the division lemma to get
203 = 179 x 1 + 24
We consider the new divisor 179 and the new remainder 24,and apply the division lemma to get
179 = 24 x 7 + 11
We consider the new divisor 24 and the new remainder 11,and apply the division lemma to get
24 = 11 x 2 + 2
We consider the new divisor 11 and the new remainder 2,and apply the division lemma to get
11 = 2 x 5 + 1
We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get
2 = 1 x 2 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1397 and 5791 is 1
Notice that 1 = HCF(2,1) = HCF(11,2) = HCF(24,11) = HCF(179,24) = HCF(203,179) = HCF(1397,203) = HCF(5791,1397) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 1397, 5791?
Answer: HCF of 1397, 5791 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 1397, 5791 using Euclid's Algorithm?
Answer: For arbitrary numbers 1397, 5791 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.