Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 14, 95, 751, 957 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 14, 95, 751, 957 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 14, 95, 751, 957 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 14, 95, 751, 957 is 1.
HCF(14, 95, 751, 957) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 14, 95, 751, 957 is 1.
Step 1: Since 95 > 14, we apply the division lemma to 95 and 14, to get
95 = 14 x 6 + 11
Step 2: Since the reminder 14 ≠ 0, we apply division lemma to 11 and 14, to get
14 = 11 x 1 + 3
Step 3: We consider the new divisor 11 and the new remainder 3, and apply the division lemma to get
11 = 3 x 3 + 2
We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get
3 = 2 x 1 + 1
We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get
2 = 1 x 2 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 14 and 95 is 1
Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(11,3) = HCF(14,11) = HCF(95,14) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 751 > 1, we apply the division lemma to 751 and 1, to get
751 = 1 x 751 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 751 is 1
Notice that 1 = HCF(751,1) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 957 > 1, we apply the division lemma to 957 and 1, to get
957 = 1 x 957 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 957 is 1
Notice that 1 = HCF(957,1) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 14, 95, 751, 957?
Answer: HCF of 14, 95, 751, 957 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 14, 95, 751, 957 using Euclid's Algorithm?
Answer: For arbitrary numbers 14, 95, 751, 957 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.