Highest Common Factor of 142, 808, 312, 764 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 142, 808, 312, 764 i.e. 2 the largest integer that leaves a remainder zero for all numbers.

HCF of 142, 808, 312, 764 is 2 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 142, 808, 312, 764 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 142, 808, 312, 764 is 2.

HCF(142, 808, 312, 764) = 2

HCF of 142, 808, 312, 764 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 142, 808, 312, 764 is 2.

Highest Common Factor of 142,808,312,764 using Euclid's algorithm

Highest Common Factor of 142,808,312,764 is 2

Step 1: Since 808 > 142, we apply the division lemma to 808 and 142, to get

808 = 142 x 5 + 98

Step 2: Since the reminder 142 ≠ 0, we apply division lemma to 98 and 142, to get

142 = 98 x 1 + 44

Step 3: We consider the new divisor 98 and the new remainder 44, and apply the division lemma to get

98 = 44 x 2 + 10

We consider the new divisor 44 and the new remainder 10,and apply the division lemma to get

44 = 10 x 4 + 4

We consider the new divisor 10 and the new remainder 4,and apply the division lemma to get

10 = 4 x 2 + 2

We consider the new divisor 4 and the new remainder 2,and apply the division lemma to get

4 = 2 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 142 and 808 is 2

Notice that 2 = HCF(4,2) = HCF(10,4) = HCF(44,10) = HCF(98,44) = HCF(142,98) = HCF(808,142) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 312 > 2, we apply the division lemma to 312 and 2, to get

312 = 2 x 156 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 2 and 312 is 2

Notice that 2 = HCF(312,2) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 764 > 2, we apply the division lemma to 764 and 2, to get

764 = 2 x 382 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 2 and 764 is 2

Notice that 2 = HCF(764,2) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 142, 808, 312, 764 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 142, 808, 312, 764?

Answer: HCF of 142, 808, 312, 764 is 2 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 142, 808, 312, 764 using Euclid's Algorithm?

Answer: For arbitrary numbers 142, 808, 312, 764 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.