Highest Common Factor of 1508, 8907 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 1508, 8907 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 1508, 8907 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 1508, 8907 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 1508, 8907 is 1.

HCF(1508, 8907) = 1

HCF of 1508, 8907 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 1508, 8907 is 1.

Highest Common Factor of 1508,8907 using Euclid's algorithm

Highest Common Factor of 1508,8907 is 1

Step 1: Since 8907 > 1508, we apply the division lemma to 8907 and 1508, to get

8907 = 1508 x 5 + 1367

Step 2: Since the reminder 1508 ≠ 0, we apply division lemma to 1367 and 1508, to get

1508 = 1367 x 1 + 141

Step 3: We consider the new divisor 1367 and the new remainder 141, and apply the division lemma to get

1367 = 141 x 9 + 98

We consider the new divisor 141 and the new remainder 98,and apply the division lemma to get

141 = 98 x 1 + 43

We consider the new divisor 98 and the new remainder 43,and apply the division lemma to get

98 = 43 x 2 + 12

We consider the new divisor 43 and the new remainder 12,and apply the division lemma to get

43 = 12 x 3 + 7

We consider the new divisor 12 and the new remainder 7,and apply the division lemma to get

12 = 7 x 1 + 5

We consider the new divisor 7 and the new remainder 5,and apply the division lemma to get

7 = 5 x 1 + 2

We consider the new divisor 5 and the new remainder 2,and apply the division lemma to get

5 = 2 x 2 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1508 and 8907 is 1

Notice that 1 = HCF(2,1) = HCF(5,2) = HCF(7,5) = HCF(12,7) = HCF(43,12) = HCF(98,43) = HCF(141,98) = HCF(1367,141) = HCF(1508,1367) = HCF(8907,1508) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 1508, 8907 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 1508, 8907?

Answer: HCF of 1508, 8907 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 1508, 8907 using Euclid's Algorithm?

Answer: For arbitrary numbers 1508, 8907 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.