Highest Common Factor of 1512, 3823 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 1512, 3823 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 1512, 3823 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 1512, 3823 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 1512, 3823 is 1.

HCF(1512, 3823) = 1

HCF of 1512, 3823 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 1512, 3823 is 1.

Highest Common Factor of 1512,3823 using Euclid's algorithm

Highest Common Factor of 1512,3823 is 1

Step 1: Since 3823 > 1512, we apply the division lemma to 3823 and 1512, to get

3823 = 1512 x 2 + 799

Step 2: Since the reminder 1512 ≠ 0, we apply division lemma to 799 and 1512, to get

1512 = 799 x 1 + 713

Step 3: We consider the new divisor 799 and the new remainder 713, and apply the division lemma to get

799 = 713 x 1 + 86

We consider the new divisor 713 and the new remainder 86,and apply the division lemma to get

713 = 86 x 8 + 25

We consider the new divisor 86 and the new remainder 25,and apply the division lemma to get

86 = 25 x 3 + 11

We consider the new divisor 25 and the new remainder 11,and apply the division lemma to get

25 = 11 x 2 + 3

We consider the new divisor 11 and the new remainder 3,and apply the division lemma to get

11 = 3 x 3 + 2

We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get

3 = 2 x 1 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1512 and 3823 is 1

Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(11,3) = HCF(25,11) = HCF(86,25) = HCF(713,86) = HCF(799,713) = HCF(1512,799) = HCF(3823,1512) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 1512, 3823 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 1512, 3823?

Answer: HCF of 1512, 3823 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 1512, 3823 using Euclid's Algorithm?

Answer: For arbitrary numbers 1512, 3823 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.