Highest Common Factor of 154, 884, 931, 577 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 154, 884, 931, 577 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 154, 884, 931, 577 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 154, 884, 931, 577 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 154, 884, 931, 577 is 1.

HCF(154, 884, 931, 577) = 1

HCF of 154, 884, 931, 577 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 154, 884, 931, 577 is 1.

Highest Common Factor of 154,884,931,577 using Euclid's algorithm

Highest Common Factor of 154,884,931,577 is 1

Step 1: Since 884 > 154, we apply the division lemma to 884 and 154, to get

884 = 154 x 5 + 114

Step 2: Since the reminder 154 ≠ 0, we apply division lemma to 114 and 154, to get

154 = 114 x 1 + 40

Step 3: We consider the new divisor 114 and the new remainder 40, and apply the division lemma to get

114 = 40 x 2 + 34

We consider the new divisor 40 and the new remainder 34,and apply the division lemma to get

40 = 34 x 1 + 6

We consider the new divisor 34 and the new remainder 6,and apply the division lemma to get

34 = 6 x 5 + 4

We consider the new divisor 6 and the new remainder 4,and apply the division lemma to get

6 = 4 x 1 + 2

We consider the new divisor 4 and the new remainder 2,and apply the division lemma to get

4 = 2 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 154 and 884 is 2

Notice that 2 = HCF(4,2) = HCF(6,4) = HCF(34,6) = HCF(40,34) = HCF(114,40) = HCF(154,114) = HCF(884,154) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 931 > 2, we apply the division lemma to 931 and 2, to get

931 = 2 x 465 + 1

Step 2: Since the reminder 2 ≠ 0, we apply division lemma to 1 and 2, to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 2 and 931 is 1

Notice that 1 = HCF(2,1) = HCF(931,2) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 577 > 1, we apply the division lemma to 577 and 1, to get

577 = 1 x 577 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 577 is 1

Notice that 1 = HCF(577,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 154, 884, 931, 577 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 154, 884, 931, 577?

Answer: HCF of 154, 884, 931, 577 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 154, 884, 931, 577 using Euclid's Algorithm?

Answer: For arbitrary numbers 154, 884, 931, 577 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.