Highest Common Factor of 155, 343, 666, 726 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 155, 343, 666, 726 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 155, 343, 666, 726 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 155, 343, 666, 726 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 155, 343, 666, 726 is 1.

HCF(155, 343, 666, 726) = 1

HCF of 155, 343, 666, 726 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 155, 343, 666, 726 is 1.

Highest Common Factor of 155,343,666,726 using Euclid's algorithm

Highest Common Factor of 155,343,666,726 is 1

Step 1: Since 343 > 155, we apply the division lemma to 343 and 155, to get

343 = 155 x 2 + 33

Step 2: Since the reminder 155 ≠ 0, we apply division lemma to 33 and 155, to get

155 = 33 x 4 + 23

Step 3: We consider the new divisor 33 and the new remainder 23, and apply the division lemma to get

33 = 23 x 1 + 10

We consider the new divisor 23 and the new remainder 10,and apply the division lemma to get

23 = 10 x 2 + 3

We consider the new divisor 10 and the new remainder 3,and apply the division lemma to get

10 = 3 x 3 + 1

We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get

3 = 1 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 155 and 343 is 1

Notice that 1 = HCF(3,1) = HCF(10,3) = HCF(23,10) = HCF(33,23) = HCF(155,33) = HCF(343,155) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 666 > 1, we apply the division lemma to 666 and 1, to get

666 = 1 x 666 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 666 is 1

Notice that 1 = HCF(666,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 726 > 1, we apply the division lemma to 726 and 1, to get

726 = 1 x 726 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 726 is 1

Notice that 1 = HCF(726,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 155, 343, 666, 726 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 155, 343, 666, 726?

Answer: HCF of 155, 343, 666, 726 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 155, 343, 666, 726 using Euclid's Algorithm?

Answer: For arbitrary numbers 155, 343, 666, 726 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.