Highest Common Factor of 1561, 9228 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 1561, 9228 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 1561, 9228 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 1561, 9228 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 1561, 9228 is 1.

HCF(1561, 9228) = 1

HCF of 1561, 9228 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 1561, 9228 is 1.

Highest Common Factor of 1561,9228 using Euclid's algorithm

Highest Common Factor of 1561,9228 is 1

Step 1: Since 9228 > 1561, we apply the division lemma to 9228 and 1561, to get

9228 = 1561 x 5 + 1423

Step 2: Since the reminder 1561 ≠ 0, we apply division lemma to 1423 and 1561, to get

1561 = 1423 x 1 + 138

Step 3: We consider the new divisor 1423 and the new remainder 138, and apply the division lemma to get

1423 = 138 x 10 + 43

We consider the new divisor 138 and the new remainder 43,and apply the division lemma to get

138 = 43 x 3 + 9

We consider the new divisor 43 and the new remainder 9,and apply the division lemma to get

43 = 9 x 4 + 7

We consider the new divisor 9 and the new remainder 7,and apply the division lemma to get

9 = 7 x 1 + 2

We consider the new divisor 7 and the new remainder 2,and apply the division lemma to get

7 = 2 x 3 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1561 and 9228 is 1

Notice that 1 = HCF(2,1) = HCF(7,2) = HCF(9,7) = HCF(43,9) = HCF(138,43) = HCF(1423,138) = HCF(1561,1423) = HCF(9228,1561) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 1561, 9228 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 1561, 9228?

Answer: HCF of 1561, 9228 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 1561, 9228 using Euclid's Algorithm?

Answer: For arbitrary numbers 1561, 9228 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.