Highest Common Factor of 158, 734, 311 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 158, 734, 311 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 158, 734, 311 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 158, 734, 311 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 158, 734, 311 is 1.

HCF(158, 734, 311) = 1

HCF of 158, 734, 311 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 158, 734, 311 is 1.

Highest Common Factor of 158,734,311 using Euclid's algorithm

Highest Common Factor of 158,734,311 is 1

Step 1: Since 734 > 158, we apply the division lemma to 734 and 158, to get

734 = 158 x 4 + 102

Step 2: Since the reminder 158 ≠ 0, we apply division lemma to 102 and 158, to get

158 = 102 x 1 + 56

Step 3: We consider the new divisor 102 and the new remainder 56, and apply the division lemma to get

102 = 56 x 1 + 46

We consider the new divisor 56 and the new remainder 46,and apply the division lemma to get

56 = 46 x 1 + 10

We consider the new divisor 46 and the new remainder 10,and apply the division lemma to get

46 = 10 x 4 + 6

We consider the new divisor 10 and the new remainder 6,and apply the division lemma to get

10 = 6 x 1 + 4

We consider the new divisor 6 and the new remainder 4,and apply the division lemma to get

6 = 4 x 1 + 2

We consider the new divisor 4 and the new remainder 2,and apply the division lemma to get

4 = 2 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 158 and 734 is 2

Notice that 2 = HCF(4,2) = HCF(6,4) = HCF(10,6) = HCF(46,10) = HCF(56,46) = HCF(102,56) = HCF(158,102) = HCF(734,158) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 311 > 2, we apply the division lemma to 311 and 2, to get

311 = 2 x 155 + 1

Step 2: Since the reminder 2 ≠ 0, we apply division lemma to 1 and 2, to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 2 and 311 is 1

Notice that 1 = HCF(2,1) = HCF(311,2) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 158, 734, 311 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 158, 734, 311?

Answer: HCF of 158, 734, 311 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 158, 734, 311 using Euclid's Algorithm?

Answer: For arbitrary numbers 158, 734, 311 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.