Highest Common Factor of 1598, 8240 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 1598, 8240 i.e. 2 the largest integer that leaves a remainder zero for all numbers.

HCF of 1598, 8240 is 2 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 1598, 8240 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 1598, 8240 is 2.

HCF(1598, 8240) = 2

HCF of 1598, 8240 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 1598, 8240 is 2.

Highest Common Factor of 1598,8240 using Euclid's algorithm

Highest Common Factor of 1598,8240 is 2

Step 1: Since 8240 > 1598, we apply the division lemma to 8240 and 1598, to get

8240 = 1598 x 5 + 250

Step 2: Since the reminder 1598 ≠ 0, we apply division lemma to 250 and 1598, to get

1598 = 250 x 6 + 98

Step 3: We consider the new divisor 250 and the new remainder 98, and apply the division lemma to get

250 = 98 x 2 + 54

We consider the new divisor 98 and the new remainder 54,and apply the division lemma to get

98 = 54 x 1 + 44

We consider the new divisor 54 and the new remainder 44,and apply the division lemma to get

54 = 44 x 1 + 10

We consider the new divisor 44 and the new remainder 10,and apply the division lemma to get

44 = 10 x 4 + 4

We consider the new divisor 10 and the new remainder 4,and apply the division lemma to get

10 = 4 x 2 + 2

We consider the new divisor 4 and the new remainder 2,and apply the division lemma to get

4 = 2 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 1598 and 8240 is 2

Notice that 2 = HCF(4,2) = HCF(10,4) = HCF(44,10) = HCF(54,44) = HCF(98,54) = HCF(250,98) = HCF(1598,250) = HCF(8240,1598) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 1598, 8240 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 1598, 8240?

Answer: HCF of 1598, 8240 is 2 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 1598, 8240 using Euclid's Algorithm?

Answer: For arbitrary numbers 1598, 8240 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.