Highest Common Factor of 162, 252, 925 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 162, 252, 925 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 162, 252, 925 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 162, 252, 925 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 162, 252, 925 is 1.

HCF(162, 252, 925) = 1

HCF of 162, 252, 925 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 162, 252, 925 is 1.

Highest Common Factor of 162,252,925 using Euclid's algorithm

Highest Common Factor of 162,252,925 is 1

Step 1: Since 252 > 162, we apply the division lemma to 252 and 162, to get

252 = 162 x 1 + 90

Step 2: Since the reminder 162 ≠ 0, we apply division lemma to 90 and 162, to get

162 = 90 x 1 + 72

Step 3: We consider the new divisor 90 and the new remainder 72, and apply the division lemma to get

90 = 72 x 1 + 18

We consider the new divisor 72 and the new remainder 18, and apply the division lemma to get

72 = 18 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 18, the HCF of 162 and 252 is 18

Notice that 18 = HCF(72,18) = HCF(90,72) = HCF(162,90) = HCF(252,162) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 925 > 18, we apply the division lemma to 925 and 18, to get

925 = 18 x 51 + 7

Step 2: Since the reminder 18 ≠ 0, we apply division lemma to 7 and 18, to get

18 = 7 x 2 + 4

Step 3: We consider the new divisor 7 and the new remainder 4, and apply the division lemma to get

7 = 4 x 1 + 3

We consider the new divisor 4 and the new remainder 3,and apply the division lemma to get

4 = 3 x 1 + 1

We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get

3 = 1 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 18 and 925 is 1

Notice that 1 = HCF(3,1) = HCF(4,3) = HCF(7,4) = HCF(18,7) = HCF(925,18) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 162, 252, 925 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 162, 252, 925?

Answer: HCF of 162, 252, 925 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 162, 252, 925 using Euclid's Algorithm?

Answer: For arbitrary numbers 162, 252, 925 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.