Highest Common Factor of 1696, 7378 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 1696, 7378 i.e. 2 the largest integer that leaves a remainder zero for all numbers.

HCF of 1696, 7378 is 2 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 1696, 7378 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 1696, 7378 is 2.

HCF(1696, 7378) = 2

HCF of 1696, 7378 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 1696, 7378 is 2.

Highest Common Factor of 1696,7378 using Euclid's algorithm

Highest Common Factor of 1696,7378 is 2

Step 1: Since 7378 > 1696, we apply the division lemma to 7378 and 1696, to get

7378 = 1696 x 4 + 594

Step 2: Since the reminder 1696 ≠ 0, we apply division lemma to 594 and 1696, to get

1696 = 594 x 2 + 508

Step 3: We consider the new divisor 594 and the new remainder 508, and apply the division lemma to get

594 = 508 x 1 + 86

We consider the new divisor 508 and the new remainder 86,and apply the division lemma to get

508 = 86 x 5 + 78

We consider the new divisor 86 and the new remainder 78,and apply the division lemma to get

86 = 78 x 1 + 8

We consider the new divisor 78 and the new remainder 8,and apply the division lemma to get

78 = 8 x 9 + 6

We consider the new divisor 8 and the new remainder 6,and apply the division lemma to get

8 = 6 x 1 + 2

We consider the new divisor 6 and the new remainder 2,and apply the division lemma to get

6 = 2 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 1696 and 7378 is 2

Notice that 2 = HCF(6,2) = HCF(8,6) = HCF(78,8) = HCF(86,78) = HCF(508,86) = HCF(594,508) = HCF(1696,594) = HCF(7378,1696) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 1696, 7378 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 1696, 7378?

Answer: HCF of 1696, 7378 is 2 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 1696, 7378 using Euclid's Algorithm?

Answer: For arbitrary numbers 1696, 7378 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.