Highest Common Factor of 173, 108, 727, 904 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 173, 108, 727, 904 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 173, 108, 727, 904 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 173, 108, 727, 904 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 173, 108, 727, 904 is 1.

HCF(173, 108, 727, 904) = 1

HCF of 173, 108, 727, 904 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 173, 108, 727, 904 is 1.

Highest Common Factor of 173,108,727,904 using Euclid's algorithm

Highest Common Factor of 173,108,727,904 is 1

Step 1: Since 173 > 108, we apply the division lemma to 173 and 108, to get

173 = 108 x 1 + 65

Step 2: Since the reminder 108 ≠ 0, we apply division lemma to 65 and 108, to get

108 = 65 x 1 + 43

Step 3: We consider the new divisor 65 and the new remainder 43, and apply the division lemma to get

65 = 43 x 1 + 22

We consider the new divisor 43 and the new remainder 22,and apply the division lemma to get

43 = 22 x 1 + 21

We consider the new divisor 22 and the new remainder 21,and apply the division lemma to get

22 = 21 x 1 + 1

We consider the new divisor 21 and the new remainder 1,and apply the division lemma to get

21 = 1 x 21 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 173 and 108 is 1

Notice that 1 = HCF(21,1) = HCF(22,21) = HCF(43,22) = HCF(65,43) = HCF(108,65) = HCF(173,108) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 727 > 1, we apply the division lemma to 727 and 1, to get

727 = 1 x 727 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 727 is 1

Notice that 1 = HCF(727,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 904 > 1, we apply the division lemma to 904 and 1, to get

904 = 1 x 904 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 904 is 1

Notice that 1 = HCF(904,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 173, 108, 727, 904 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 173, 108, 727, 904?

Answer: HCF of 173, 108, 727, 904 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 173, 108, 727, 904 using Euclid's Algorithm?

Answer: For arbitrary numbers 173, 108, 727, 904 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.