Highest Common Factor of 173, 3384 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 173, 3384 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 173, 3384 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 173, 3384 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 173, 3384 is 1.

HCF(173, 3384) = 1

HCF of 173, 3384 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 173, 3384 is 1.

Highest Common Factor of 173,3384 using Euclid's algorithm

Highest Common Factor of 173,3384 is 1

Step 1: Since 3384 > 173, we apply the division lemma to 3384 and 173, to get

3384 = 173 x 19 + 97

Step 2: Since the reminder 173 ≠ 0, we apply division lemma to 97 and 173, to get

173 = 97 x 1 + 76

Step 3: We consider the new divisor 97 and the new remainder 76, and apply the division lemma to get

97 = 76 x 1 + 21

We consider the new divisor 76 and the new remainder 21,and apply the division lemma to get

76 = 21 x 3 + 13

We consider the new divisor 21 and the new remainder 13,and apply the division lemma to get

21 = 13 x 1 + 8

We consider the new divisor 13 and the new remainder 8,and apply the division lemma to get

13 = 8 x 1 + 5

We consider the new divisor 8 and the new remainder 5,and apply the division lemma to get

8 = 5 x 1 + 3

We consider the new divisor 5 and the new remainder 3,and apply the division lemma to get

5 = 3 x 1 + 2

We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get

3 = 2 x 1 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 173 and 3384 is 1

Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(5,3) = HCF(8,5) = HCF(13,8) = HCF(21,13) = HCF(76,21) = HCF(97,76) = HCF(173,97) = HCF(3384,173) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 173, 3384 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 173, 3384?

Answer: HCF of 173, 3384 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 173, 3384 using Euclid's Algorithm?

Answer: For arbitrary numbers 173, 3384 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.