Highest Common Factor of 173, 908, 388, 769 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 173, 908, 388, 769 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 173, 908, 388, 769 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 173, 908, 388, 769 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 173, 908, 388, 769 is 1.

HCF(173, 908, 388, 769) = 1

HCF of 173, 908, 388, 769 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 173, 908, 388, 769 is 1.

Highest Common Factor of 173,908,388,769 using Euclid's algorithm

Highest Common Factor of 173,908,388,769 is 1

Step 1: Since 908 > 173, we apply the division lemma to 908 and 173, to get

908 = 173 x 5 + 43

Step 2: Since the reminder 173 ≠ 0, we apply division lemma to 43 and 173, to get

173 = 43 x 4 + 1

Step 3: We consider the new divisor 43 and the new remainder 1, and apply the division lemma to get

43 = 1 x 43 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 173 and 908 is 1

Notice that 1 = HCF(43,1) = HCF(173,43) = HCF(908,173) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 388 > 1, we apply the division lemma to 388 and 1, to get

388 = 1 x 388 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 388 is 1

Notice that 1 = HCF(388,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 769 > 1, we apply the division lemma to 769 and 1, to get

769 = 1 x 769 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 769 is 1

Notice that 1 = HCF(769,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 173, 908, 388, 769 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 173, 908, 388, 769?

Answer: HCF of 173, 908, 388, 769 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 173, 908, 388, 769 using Euclid's Algorithm?

Answer: For arbitrary numbers 173, 908, 388, 769 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.