Highest Common Factor of 174, 783, 56 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 174, 783, 56 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 174, 783, 56 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 174, 783, 56 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 174, 783, 56 is 1.

HCF(174, 783, 56) = 1

HCF of 174, 783, 56 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 174, 783, 56 is 1.

Highest Common Factor of 174,783,56 using Euclid's algorithm

Highest Common Factor of 174,783,56 is 1

Step 1: Since 783 > 174, we apply the division lemma to 783 and 174, to get

783 = 174 x 4 + 87

Step 2: Since the reminder 174 ≠ 0, we apply division lemma to 87 and 174, to get

174 = 87 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 87, the HCF of 174 and 783 is 87

Notice that 87 = HCF(174,87) = HCF(783,174) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 87 > 56, we apply the division lemma to 87 and 56, to get

87 = 56 x 1 + 31

Step 2: Since the reminder 56 ≠ 0, we apply division lemma to 31 and 56, to get

56 = 31 x 1 + 25

Step 3: We consider the new divisor 31 and the new remainder 25, and apply the division lemma to get

31 = 25 x 1 + 6

We consider the new divisor 25 and the new remainder 6,and apply the division lemma to get

25 = 6 x 4 + 1

We consider the new divisor 6 and the new remainder 1,and apply the division lemma to get

6 = 1 x 6 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 87 and 56 is 1

Notice that 1 = HCF(6,1) = HCF(25,6) = HCF(31,25) = HCF(56,31) = HCF(87,56) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 174, 783, 56 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 174, 783, 56?

Answer: HCF of 174, 783, 56 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 174, 783, 56 using Euclid's Algorithm?

Answer: For arbitrary numbers 174, 783, 56 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.