Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 1801, 1047 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 1801, 1047 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 1801, 1047 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 1801, 1047 is 1.
HCF(1801, 1047) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 1801, 1047 is 1.
Step 1: Since 1801 > 1047, we apply the division lemma to 1801 and 1047, to get
1801 = 1047 x 1 + 754
Step 2: Since the reminder 1047 ≠ 0, we apply division lemma to 754 and 1047, to get
1047 = 754 x 1 + 293
Step 3: We consider the new divisor 754 and the new remainder 293, and apply the division lemma to get
754 = 293 x 2 + 168
We consider the new divisor 293 and the new remainder 168,and apply the division lemma to get
293 = 168 x 1 + 125
We consider the new divisor 168 and the new remainder 125,and apply the division lemma to get
168 = 125 x 1 + 43
We consider the new divisor 125 and the new remainder 43,and apply the division lemma to get
125 = 43 x 2 + 39
We consider the new divisor 43 and the new remainder 39,and apply the division lemma to get
43 = 39 x 1 + 4
We consider the new divisor 39 and the new remainder 4,and apply the division lemma to get
39 = 4 x 9 + 3
We consider the new divisor 4 and the new remainder 3,and apply the division lemma to get
4 = 3 x 1 + 1
We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get
3 = 1 x 3 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1801 and 1047 is 1
Notice that 1 = HCF(3,1) = HCF(4,3) = HCF(39,4) = HCF(43,39) = HCF(125,43) = HCF(168,125) = HCF(293,168) = HCF(754,293) = HCF(1047,754) = HCF(1801,1047) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 1801, 1047?
Answer: HCF of 1801, 1047 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 1801, 1047 using Euclid's Algorithm?
Answer: For arbitrary numbers 1801, 1047 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.