Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 183, 803, 383, 186 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 183, 803, 383, 186 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 183, 803, 383, 186 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 183, 803, 383, 186 is 1.
HCF(183, 803, 383, 186) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 183, 803, 383, 186 is 1.
Step 1: Since 803 > 183, we apply the division lemma to 803 and 183, to get
803 = 183 x 4 + 71
Step 2: Since the reminder 183 ≠ 0, we apply division lemma to 71 and 183, to get
183 = 71 x 2 + 41
Step 3: We consider the new divisor 71 and the new remainder 41, and apply the division lemma to get
71 = 41 x 1 + 30
We consider the new divisor 41 and the new remainder 30,and apply the division lemma to get
41 = 30 x 1 + 11
We consider the new divisor 30 and the new remainder 11,and apply the division lemma to get
30 = 11 x 2 + 8
We consider the new divisor 11 and the new remainder 8,and apply the division lemma to get
11 = 8 x 1 + 3
We consider the new divisor 8 and the new remainder 3,and apply the division lemma to get
8 = 3 x 2 + 2
We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get
3 = 2 x 1 + 1
We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get
2 = 1 x 2 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 183 and 803 is 1
Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(8,3) = HCF(11,8) = HCF(30,11) = HCF(41,30) = HCF(71,41) = HCF(183,71) = HCF(803,183) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 383 > 1, we apply the division lemma to 383 and 1, to get
383 = 1 x 383 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 383 is 1
Notice that 1 = HCF(383,1) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 186 > 1, we apply the division lemma to 186 and 1, to get
186 = 1 x 186 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 186 is 1
Notice that 1 = HCF(186,1) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 183, 803, 383, 186?
Answer: HCF of 183, 803, 383, 186 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 183, 803, 383, 186 using Euclid's Algorithm?
Answer: For arbitrary numbers 183, 803, 383, 186 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.