Highest Common Factor of 1842, 1173 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 1842, 1173 i.e. 3 the largest integer that leaves a remainder zero for all numbers.

HCF of 1842, 1173 is 3 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 1842, 1173 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 1842, 1173 is 3.

HCF(1842, 1173) = 3

HCF of 1842, 1173 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 1842, 1173 is 3.

Highest Common Factor of 1842,1173 using Euclid's algorithm

Highest Common Factor of 1842,1173 is 3

Step 1: Since 1842 > 1173, we apply the division lemma to 1842 and 1173, to get

1842 = 1173 x 1 + 669

Step 2: Since the reminder 1173 ≠ 0, we apply division lemma to 669 and 1173, to get

1173 = 669 x 1 + 504

Step 3: We consider the new divisor 669 and the new remainder 504, and apply the division lemma to get

669 = 504 x 1 + 165

We consider the new divisor 504 and the new remainder 165,and apply the division lemma to get

504 = 165 x 3 + 9

We consider the new divisor 165 and the new remainder 9,and apply the division lemma to get

165 = 9 x 18 + 3

We consider the new divisor 9 and the new remainder 3,and apply the division lemma to get

9 = 3 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 3, the HCF of 1842 and 1173 is 3

Notice that 3 = HCF(9,3) = HCF(165,9) = HCF(504,165) = HCF(669,504) = HCF(1173,669) = HCF(1842,1173) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 1842, 1173 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 1842, 1173?

Answer: HCF of 1842, 1173 is 3 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 1842, 1173 using Euclid's Algorithm?

Answer: For arbitrary numbers 1842, 1173 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.