Highest Common Factor of 193, 317, 10 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 193, 317, 10 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 193, 317, 10 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 193, 317, 10 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 193, 317, 10 is 1.

HCF(193, 317, 10) = 1

HCF of 193, 317, 10 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 193, 317, 10 is 1.

Highest Common Factor of 193,317,10 using Euclid's algorithm

Highest Common Factor of 193,317,10 is 1

Step 1: Since 317 > 193, we apply the division lemma to 317 and 193, to get

317 = 193 x 1 + 124

Step 2: Since the reminder 193 ≠ 0, we apply division lemma to 124 and 193, to get

193 = 124 x 1 + 69

Step 3: We consider the new divisor 124 and the new remainder 69, and apply the division lemma to get

124 = 69 x 1 + 55

We consider the new divisor 69 and the new remainder 55,and apply the division lemma to get

69 = 55 x 1 + 14

We consider the new divisor 55 and the new remainder 14,and apply the division lemma to get

55 = 14 x 3 + 13

We consider the new divisor 14 and the new remainder 13,and apply the division lemma to get

14 = 13 x 1 + 1

We consider the new divisor 13 and the new remainder 1,and apply the division lemma to get

13 = 1 x 13 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 193 and 317 is 1

Notice that 1 = HCF(13,1) = HCF(14,13) = HCF(55,14) = HCF(69,55) = HCF(124,69) = HCF(193,124) = HCF(317,193) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 10 > 1, we apply the division lemma to 10 and 1, to get

10 = 1 x 10 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 10 is 1

Notice that 1 = HCF(10,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 193, 317, 10 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 193, 317, 10?

Answer: HCF of 193, 317, 10 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 193, 317, 10 using Euclid's Algorithm?

Answer: For arbitrary numbers 193, 317, 10 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.