Highest Common Factor of 1932, 8539 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 1932, 8539 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 1932, 8539 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 1932, 8539 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 1932, 8539 is 1.

HCF(1932, 8539) = 1

HCF of 1932, 8539 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 1932, 8539 is 1.

Highest Common Factor of 1932,8539 using Euclid's algorithm

Highest Common Factor of 1932,8539 is 1

Step 1: Since 8539 > 1932, we apply the division lemma to 8539 and 1932, to get

8539 = 1932 x 4 + 811

Step 2: Since the reminder 1932 ≠ 0, we apply division lemma to 811 and 1932, to get

1932 = 811 x 2 + 310

Step 3: We consider the new divisor 811 and the new remainder 310, and apply the division lemma to get

811 = 310 x 2 + 191

We consider the new divisor 310 and the new remainder 191,and apply the division lemma to get

310 = 191 x 1 + 119

We consider the new divisor 191 and the new remainder 119,and apply the division lemma to get

191 = 119 x 1 + 72

We consider the new divisor 119 and the new remainder 72,and apply the division lemma to get

119 = 72 x 1 + 47

We consider the new divisor 72 and the new remainder 47,and apply the division lemma to get

72 = 47 x 1 + 25

We consider the new divisor 47 and the new remainder 25,and apply the division lemma to get

47 = 25 x 1 + 22

We consider the new divisor 25 and the new remainder 22,and apply the division lemma to get

25 = 22 x 1 + 3

We consider the new divisor 22 and the new remainder 3,and apply the division lemma to get

22 = 3 x 7 + 1

We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get

3 = 1 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1932 and 8539 is 1

Notice that 1 = HCF(3,1) = HCF(22,3) = HCF(25,22) = HCF(47,25) = HCF(72,47) = HCF(119,72) = HCF(191,119) = HCF(310,191) = HCF(811,310) = HCF(1932,811) = HCF(8539,1932) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 1932, 8539 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 1932, 8539?

Answer: HCF of 1932, 8539 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 1932, 8539 using Euclid's Algorithm?

Answer: For arbitrary numbers 1932, 8539 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.