Highest Common Factor of 197, 158, 728, 507 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 197, 158, 728, 507 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 197, 158, 728, 507 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 197, 158, 728, 507 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 197, 158, 728, 507 is 1.

HCF(197, 158, 728, 507) = 1

HCF of 197, 158, 728, 507 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 197, 158, 728, 507 is 1.

Highest Common Factor of 197,158,728,507 using Euclid's algorithm

Highest Common Factor of 197,158,728,507 is 1

Step 1: Since 197 > 158, we apply the division lemma to 197 and 158, to get

197 = 158 x 1 + 39

Step 2: Since the reminder 158 ≠ 0, we apply division lemma to 39 and 158, to get

158 = 39 x 4 + 2

Step 3: We consider the new divisor 39 and the new remainder 2, and apply the division lemma to get

39 = 2 x 19 + 1

We consider the new divisor 2 and the new remainder 1, and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 197 and 158 is 1

Notice that 1 = HCF(2,1) = HCF(39,2) = HCF(158,39) = HCF(197,158) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 728 > 1, we apply the division lemma to 728 and 1, to get

728 = 1 x 728 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 728 is 1

Notice that 1 = HCF(728,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 507 > 1, we apply the division lemma to 507 and 1, to get

507 = 1 x 507 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 507 is 1

Notice that 1 = HCF(507,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 197, 158, 728, 507 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 197, 158, 728, 507?

Answer: HCF of 197, 158, 728, 507 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 197, 158, 728, 507 using Euclid's Algorithm?

Answer: For arbitrary numbers 197, 158, 728, 507 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.