Highest Common Factor of 197, 536, 742, 61 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 197, 536, 742, 61 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 197, 536, 742, 61 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 197, 536, 742, 61 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 197, 536, 742, 61 is 1.

HCF(197, 536, 742, 61) = 1

HCF of 197, 536, 742, 61 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 197, 536, 742, 61 is 1.

Highest Common Factor of 197,536,742,61 using Euclid's algorithm

Highest Common Factor of 197,536,742,61 is 1

Step 1: Since 536 > 197, we apply the division lemma to 536 and 197, to get

536 = 197 x 2 + 142

Step 2: Since the reminder 197 ≠ 0, we apply division lemma to 142 and 197, to get

197 = 142 x 1 + 55

Step 3: We consider the new divisor 142 and the new remainder 55, and apply the division lemma to get

142 = 55 x 2 + 32

We consider the new divisor 55 and the new remainder 32,and apply the division lemma to get

55 = 32 x 1 + 23

We consider the new divisor 32 and the new remainder 23,and apply the division lemma to get

32 = 23 x 1 + 9

We consider the new divisor 23 and the new remainder 9,and apply the division lemma to get

23 = 9 x 2 + 5

We consider the new divisor 9 and the new remainder 5,and apply the division lemma to get

9 = 5 x 1 + 4

We consider the new divisor 5 and the new remainder 4,and apply the division lemma to get

5 = 4 x 1 + 1

We consider the new divisor 4 and the new remainder 1,and apply the division lemma to get

4 = 1 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 197 and 536 is 1

Notice that 1 = HCF(4,1) = HCF(5,4) = HCF(9,5) = HCF(23,9) = HCF(32,23) = HCF(55,32) = HCF(142,55) = HCF(197,142) = HCF(536,197) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 742 > 1, we apply the division lemma to 742 and 1, to get

742 = 1 x 742 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 742 is 1

Notice that 1 = HCF(742,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 61 > 1, we apply the division lemma to 61 and 1, to get

61 = 1 x 61 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 61 is 1

Notice that 1 = HCF(61,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 197, 536, 742, 61 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 197, 536, 742, 61?

Answer: HCF of 197, 536, 742, 61 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 197, 536, 742, 61 using Euclid's Algorithm?

Answer: For arbitrary numbers 197, 536, 742, 61 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.