Highest Common Factor of 198, 148, 893, 26 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 198, 148, 893, 26 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 198, 148, 893, 26 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 198, 148, 893, 26 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 198, 148, 893, 26 is 1.

HCF(198, 148, 893, 26) = 1

HCF of 198, 148, 893, 26 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 198, 148, 893, 26 is 1.

Highest Common Factor of 198,148,893,26 using Euclid's algorithm

Highest Common Factor of 198,148,893,26 is 1

Step 1: Since 198 > 148, we apply the division lemma to 198 and 148, to get

198 = 148 x 1 + 50

Step 2: Since the reminder 148 ≠ 0, we apply division lemma to 50 and 148, to get

148 = 50 x 2 + 48

Step 3: We consider the new divisor 50 and the new remainder 48, and apply the division lemma to get

50 = 48 x 1 + 2

We consider the new divisor 48 and the new remainder 2, and apply the division lemma to get

48 = 2 x 24 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 198 and 148 is 2

Notice that 2 = HCF(48,2) = HCF(50,48) = HCF(148,50) = HCF(198,148) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 893 > 2, we apply the division lemma to 893 and 2, to get

893 = 2 x 446 + 1

Step 2: Since the reminder 2 ≠ 0, we apply division lemma to 1 and 2, to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 2 and 893 is 1

Notice that 1 = HCF(2,1) = HCF(893,2) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 26 > 1, we apply the division lemma to 26 and 1, to get

26 = 1 x 26 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 26 is 1

Notice that 1 = HCF(26,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 198, 148, 893, 26 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 198, 148, 893, 26?

Answer: HCF of 198, 148, 893, 26 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 198, 148, 893, 26 using Euclid's Algorithm?

Answer: For arbitrary numbers 198, 148, 893, 26 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.