Highest Common Factor of 199, 751, 783, 141 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 199, 751, 783, 141 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 199, 751, 783, 141 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 199, 751, 783, 141 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 199, 751, 783, 141 is 1.

HCF(199, 751, 783, 141) = 1

HCF of 199, 751, 783, 141 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 199, 751, 783, 141 is 1.

Highest Common Factor of 199,751,783,141 using Euclid's algorithm

Highest Common Factor of 199,751,783,141 is 1

Step 1: Since 751 > 199, we apply the division lemma to 751 and 199, to get

751 = 199 x 3 + 154

Step 2: Since the reminder 199 ≠ 0, we apply division lemma to 154 and 199, to get

199 = 154 x 1 + 45

Step 3: We consider the new divisor 154 and the new remainder 45, and apply the division lemma to get

154 = 45 x 3 + 19

We consider the new divisor 45 and the new remainder 19,and apply the division lemma to get

45 = 19 x 2 + 7

We consider the new divisor 19 and the new remainder 7,and apply the division lemma to get

19 = 7 x 2 + 5

We consider the new divisor 7 and the new remainder 5,and apply the division lemma to get

7 = 5 x 1 + 2

We consider the new divisor 5 and the new remainder 2,and apply the division lemma to get

5 = 2 x 2 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 199 and 751 is 1

Notice that 1 = HCF(2,1) = HCF(5,2) = HCF(7,5) = HCF(19,7) = HCF(45,19) = HCF(154,45) = HCF(199,154) = HCF(751,199) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 783 > 1, we apply the division lemma to 783 and 1, to get

783 = 1 x 783 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 783 is 1

Notice that 1 = HCF(783,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 141 > 1, we apply the division lemma to 141 and 1, to get

141 = 1 x 141 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 141 is 1

Notice that 1 = HCF(141,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 199, 751, 783, 141 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 199, 751, 783, 141?

Answer: HCF of 199, 751, 783, 141 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 199, 751, 783, 141 using Euclid's Algorithm?

Answer: For arbitrary numbers 199, 751, 783, 141 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.