Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 1993, 4986 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 1993, 4986 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 1993, 4986 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 1993, 4986 is 1.
HCF(1993, 4986) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 1993, 4986 is 1.
Step 1: Since 4986 > 1993, we apply the division lemma to 4986 and 1993, to get
4986 = 1993 x 2 + 1000
Step 2: Since the reminder 1993 ≠ 0, we apply division lemma to 1000 and 1993, to get
1993 = 1000 x 1 + 993
Step 3: We consider the new divisor 1000 and the new remainder 993, and apply the division lemma to get
1000 = 993 x 1 + 7
We consider the new divisor 993 and the new remainder 7,and apply the division lemma to get
993 = 7 x 141 + 6
We consider the new divisor 7 and the new remainder 6,and apply the division lemma to get
7 = 6 x 1 + 1
We consider the new divisor 6 and the new remainder 1,and apply the division lemma to get
6 = 1 x 6 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1993 and 4986 is 1
Notice that 1 = HCF(6,1) = HCF(7,6) = HCF(993,7) = HCF(1000,993) = HCF(1993,1000) = HCF(4986,1993) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 1993, 4986?
Answer: HCF of 1993, 4986 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 1993, 4986 using Euclid's Algorithm?
Answer: For arbitrary numbers 1993, 4986 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.