Highest Common Factor of 2010, 7099 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 2010, 7099 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 2010, 7099 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 2010, 7099 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 2010, 7099 is 1.

HCF(2010, 7099) = 1

HCF of 2010, 7099 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 2010, 7099 is 1.

Highest Common Factor of 2010,7099 using Euclid's algorithm

Highest Common Factor of 2010,7099 is 1

Step 1: Since 7099 > 2010, we apply the division lemma to 7099 and 2010, to get

7099 = 2010 x 3 + 1069

Step 2: Since the reminder 2010 ≠ 0, we apply division lemma to 1069 and 2010, to get

2010 = 1069 x 1 + 941

Step 3: We consider the new divisor 1069 and the new remainder 941, and apply the division lemma to get

1069 = 941 x 1 + 128

We consider the new divisor 941 and the new remainder 128,and apply the division lemma to get

941 = 128 x 7 + 45

We consider the new divisor 128 and the new remainder 45,and apply the division lemma to get

128 = 45 x 2 + 38

We consider the new divisor 45 and the new remainder 38,and apply the division lemma to get

45 = 38 x 1 + 7

We consider the new divisor 38 and the new remainder 7,and apply the division lemma to get

38 = 7 x 5 + 3

We consider the new divisor 7 and the new remainder 3,and apply the division lemma to get

7 = 3 x 2 + 1

We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get

3 = 1 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 2010 and 7099 is 1

Notice that 1 = HCF(3,1) = HCF(7,3) = HCF(38,7) = HCF(45,38) = HCF(128,45) = HCF(941,128) = HCF(1069,941) = HCF(2010,1069) = HCF(7099,2010) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 2010, 7099 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 2010, 7099?

Answer: HCF of 2010, 7099 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 2010, 7099 using Euclid's Algorithm?

Answer: For arbitrary numbers 2010, 7099 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.