Highest Common Factor of 202, 324, 233, 824 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 202, 324, 233, 824 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 202, 324, 233, 824 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 202, 324, 233, 824 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 202, 324, 233, 824 is 1.

HCF(202, 324, 233, 824) = 1

HCF of 202, 324, 233, 824 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 202, 324, 233, 824 is 1.

Highest Common Factor of 202,324,233,824 using Euclid's algorithm

Highest Common Factor of 202,324,233,824 is 1

Step 1: Since 324 > 202, we apply the division lemma to 324 and 202, to get

324 = 202 x 1 + 122

Step 2: Since the reminder 202 ≠ 0, we apply division lemma to 122 and 202, to get

202 = 122 x 1 + 80

Step 3: We consider the new divisor 122 and the new remainder 80, and apply the division lemma to get

122 = 80 x 1 + 42

We consider the new divisor 80 and the new remainder 42,and apply the division lemma to get

80 = 42 x 1 + 38

We consider the new divisor 42 and the new remainder 38,and apply the division lemma to get

42 = 38 x 1 + 4

We consider the new divisor 38 and the new remainder 4,and apply the division lemma to get

38 = 4 x 9 + 2

We consider the new divisor 4 and the new remainder 2,and apply the division lemma to get

4 = 2 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 202 and 324 is 2

Notice that 2 = HCF(4,2) = HCF(38,4) = HCF(42,38) = HCF(80,42) = HCF(122,80) = HCF(202,122) = HCF(324,202) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 233 > 2, we apply the division lemma to 233 and 2, to get

233 = 2 x 116 + 1

Step 2: Since the reminder 2 ≠ 0, we apply division lemma to 1 and 2, to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 2 and 233 is 1

Notice that 1 = HCF(2,1) = HCF(233,2) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 824 > 1, we apply the division lemma to 824 and 1, to get

824 = 1 x 824 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 824 is 1

Notice that 1 = HCF(824,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 202, 324, 233, 824 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 202, 324, 233, 824?

Answer: HCF of 202, 324, 233, 824 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 202, 324, 233, 824 using Euclid's Algorithm?

Answer: For arbitrary numbers 202, 324, 233, 824 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.