Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 203, 379 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 203, 379 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 203, 379 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 203, 379 is 1.
HCF(203, 379) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 203, 379 is 1.
Step 1: Since 379 > 203, we apply the division lemma to 379 and 203, to get
379 = 203 x 1 + 176
Step 2: Since the reminder 203 ≠ 0, we apply division lemma to 176 and 203, to get
203 = 176 x 1 + 27
Step 3: We consider the new divisor 176 and the new remainder 27, and apply the division lemma to get
176 = 27 x 6 + 14
We consider the new divisor 27 and the new remainder 14,and apply the division lemma to get
27 = 14 x 1 + 13
We consider the new divisor 14 and the new remainder 13,and apply the division lemma to get
14 = 13 x 1 + 1
We consider the new divisor 13 and the new remainder 1,and apply the division lemma to get
13 = 1 x 13 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 203 and 379 is 1
Notice that 1 = HCF(13,1) = HCF(14,13) = HCF(27,14) = HCF(176,27) = HCF(203,176) = HCF(379,203) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 203, 379?
Answer: HCF of 203, 379 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 203, 379 using Euclid's Algorithm?
Answer: For arbitrary numbers 203, 379 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.