Highest Common Factor of 204, 7468, 5556 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 204, 7468, 5556 i.e. 4 the largest integer that leaves a remainder zero for all numbers.

HCF of 204, 7468, 5556 is 4 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 204, 7468, 5556 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 204, 7468, 5556 is 4.

HCF(204, 7468, 5556) = 4

HCF of 204, 7468, 5556 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 204, 7468, 5556 is 4.

Highest Common Factor of 204,7468,5556 using Euclid's algorithm

Highest Common Factor of 204,7468,5556 is 4

Step 1: Since 7468 > 204, we apply the division lemma to 7468 and 204, to get

7468 = 204 x 36 + 124

Step 2: Since the reminder 204 ≠ 0, we apply division lemma to 124 and 204, to get

204 = 124 x 1 + 80

Step 3: We consider the new divisor 124 and the new remainder 80, and apply the division lemma to get

124 = 80 x 1 + 44

We consider the new divisor 80 and the new remainder 44,and apply the division lemma to get

80 = 44 x 1 + 36

We consider the new divisor 44 and the new remainder 36,and apply the division lemma to get

44 = 36 x 1 + 8

We consider the new divisor 36 and the new remainder 8,and apply the division lemma to get

36 = 8 x 4 + 4

We consider the new divisor 8 and the new remainder 4,and apply the division lemma to get

8 = 4 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 4, the HCF of 204 and 7468 is 4

Notice that 4 = HCF(8,4) = HCF(36,8) = HCF(44,36) = HCF(80,44) = HCF(124,80) = HCF(204,124) = HCF(7468,204) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 5556 > 4, we apply the division lemma to 5556 and 4, to get

5556 = 4 x 1389 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 4, the HCF of 4 and 5556 is 4

Notice that 4 = HCF(5556,4) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 204, 7468, 5556 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 204, 7468, 5556?

Answer: HCF of 204, 7468, 5556 is 4 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 204, 7468, 5556 using Euclid's Algorithm?

Answer: For arbitrary numbers 204, 7468, 5556 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.