Highest Common Factor of 208, 532, 264, 269 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 208, 532, 264, 269 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 208, 532, 264, 269 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 208, 532, 264, 269 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 208, 532, 264, 269 is 1.

HCF(208, 532, 264, 269) = 1

HCF of 208, 532, 264, 269 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 208, 532, 264, 269 is 1.

Highest Common Factor of 208,532,264,269 using Euclid's algorithm

Highest Common Factor of 208,532,264,269 is 1

Step 1: Since 532 > 208, we apply the division lemma to 532 and 208, to get

532 = 208 x 2 + 116

Step 2: Since the reminder 208 ≠ 0, we apply division lemma to 116 and 208, to get

208 = 116 x 1 + 92

Step 3: We consider the new divisor 116 and the new remainder 92, and apply the division lemma to get

116 = 92 x 1 + 24

We consider the new divisor 92 and the new remainder 24,and apply the division lemma to get

92 = 24 x 3 + 20

We consider the new divisor 24 and the new remainder 20,and apply the division lemma to get

24 = 20 x 1 + 4

We consider the new divisor 20 and the new remainder 4,and apply the division lemma to get

20 = 4 x 5 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 4, the HCF of 208 and 532 is 4

Notice that 4 = HCF(20,4) = HCF(24,20) = HCF(92,24) = HCF(116,92) = HCF(208,116) = HCF(532,208) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 264 > 4, we apply the division lemma to 264 and 4, to get

264 = 4 x 66 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 4, the HCF of 4 and 264 is 4

Notice that 4 = HCF(264,4) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 269 > 4, we apply the division lemma to 269 and 4, to get

269 = 4 x 67 + 1

Step 2: Since the reminder 4 ≠ 0, we apply division lemma to 1 and 4, to get

4 = 1 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 4 and 269 is 1

Notice that 1 = HCF(4,1) = HCF(269,4) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 208, 532, 264, 269 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 208, 532, 264, 269?

Answer: HCF of 208, 532, 264, 269 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 208, 532, 264, 269 using Euclid's Algorithm?

Answer: For arbitrary numbers 208, 532, 264, 269 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.