Highest Common Factor of 21, 40, 152, 902 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 21, 40, 152, 902 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 21, 40, 152, 902 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 21, 40, 152, 902 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 21, 40, 152, 902 is 1.

HCF(21, 40, 152, 902) = 1

HCF of 21, 40, 152, 902 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 21, 40, 152, 902 is 1.

Highest Common Factor of 21,40,152,902 using Euclid's algorithm

Highest Common Factor of 21,40,152,902 is 1

Step 1: Since 40 > 21, we apply the division lemma to 40 and 21, to get

40 = 21 x 1 + 19

Step 2: Since the reminder 21 ≠ 0, we apply division lemma to 19 and 21, to get

21 = 19 x 1 + 2

Step 3: We consider the new divisor 19 and the new remainder 2, and apply the division lemma to get

19 = 2 x 9 + 1

We consider the new divisor 2 and the new remainder 1, and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 21 and 40 is 1

Notice that 1 = HCF(2,1) = HCF(19,2) = HCF(21,19) = HCF(40,21) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 152 > 1, we apply the division lemma to 152 and 1, to get

152 = 1 x 152 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 152 is 1

Notice that 1 = HCF(152,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 902 > 1, we apply the division lemma to 902 and 1, to get

902 = 1 x 902 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 902 is 1

Notice that 1 = HCF(902,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 21, 40, 152, 902 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 21, 40, 152, 902?

Answer: HCF of 21, 40, 152, 902 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 21, 40, 152, 902 using Euclid's Algorithm?

Answer: For arbitrary numbers 21, 40, 152, 902 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.