Highest Common Factor of 210, 140 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 210, 140 i.e. 70 the largest integer that leaves a remainder zero for all numbers.

HCF of 210, 140 is 70 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 210, 140 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 210, 140 is 70.

HCF(210, 140) = 70

HCF of 210, 140 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 210, 140 is 70.

Highest Common Factor of 210,140 using Euclid's algorithm

Highest Common Factor of 210,140 is 70

Step 1: Since 210 > 140, we apply the division lemma to 210 and 140, to get

210 = 140 x 1 + 70

Step 2: Since the reminder 140 ≠ 0, we apply division lemma to 70 and 140, to get

140 = 70 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 70, the HCF of 210 and 140 is 70

Notice that 70 = HCF(140,70) = HCF(210,140) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 210, 140 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 210, 140?

Answer: HCF of 210, 140 is 70 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 210, 140 using Euclid's Algorithm?

Answer: For arbitrary numbers 210, 140 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.