Highest Common Factor of 2148, 1568 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 2148, 1568 i.e. 4 the largest integer that leaves a remainder zero for all numbers.

HCF of 2148, 1568 is 4 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 2148, 1568 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 2148, 1568 is 4.

HCF(2148, 1568) = 4

HCF of 2148, 1568 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 2148, 1568 is 4.

Highest Common Factor of 2148,1568 using Euclid's algorithm

Highest Common Factor of 2148,1568 is 4

Step 1: Since 2148 > 1568, we apply the division lemma to 2148 and 1568, to get

2148 = 1568 x 1 + 580

Step 2: Since the reminder 1568 ≠ 0, we apply division lemma to 580 and 1568, to get

1568 = 580 x 2 + 408

Step 3: We consider the new divisor 580 and the new remainder 408, and apply the division lemma to get

580 = 408 x 1 + 172

We consider the new divisor 408 and the new remainder 172,and apply the division lemma to get

408 = 172 x 2 + 64

We consider the new divisor 172 and the new remainder 64,and apply the division lemma to get

172 = 64 x 2 + 44

We consider the new divisor 64 and the new remainder 44,and apply the division lemma to get

64 = 44 x 1 + 20

We consider the new divisor 44 and the new remainder 20,and apply the division lemma to get

44 = 20 x 2 + 4

We consider the new divisor 20 and the new remainder 4,and apply the division lemma to get

20 = 4 x 5 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 4, the HCF of 2148 and 1568 is 4

Notice that 4 = HCF(20,4) = HCF(44,20) = HCF(64,44) = HCF(172,64) = HCF(408,172) = HCF(580,408) = HCF(1568,580) = HCF(2148,1568) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 2148, 1568 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 2148, 1568?

Answer: HCF of 2148, 1568 is 4 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 2148, 1568 using Euclid's Algorithm?

Answer: For arbitrary numbers 2148, 1568 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.