Highest Common Factor of 216, 168, 182, 767 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 216, 168, 182, 767 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 216, 168, 182, 767 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 216, 168, 182, 767 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 216, 168, 182, 767 is 1.

HCF(216, 168, 182, 767) = 1

HCF of 216, 168, 182, 767 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 216, 168, 182, 767 is 1.

Highest Common Factor of 216,168,182,767 using Euclid's algorithm

Highest Common Factor of 216,168,182,767 is 1

Step 1: Since 216 > 168, we apply the division lemma to 216 and 168, to get

216 = 168 x 1 + 48

Step 2: Since the reminder 168 ≠ 0, we apply division lemma to 48 and 168, to get

168 = 48 x 3 + 24

Step 3: We consider the new divisor 48 and the new remainder 24, and apply the division lemma to get

48 = 24 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 24, the HCF of 216 and 168 is 24

Notice that 24 = HCF(48,24) = HCF(168,48) = HCF(216,168) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 182 > 24, we apply the division lemma to 182 and 24, to get

182 = 24 x 7 + 14

Step 2: Since the reminder 24 ≠ 0, we apply division lemma to 14 and 24, to get

24 = 14 x 1 + 10

Step 3: We consider the new divisor 14 and the new remainder 10, and apply the division lemma to get

14 = 10 x 1 + 4

We consider the new divisor 10 and the new remainder 4,and apply the division lemma to get

10 = 4 x 2 + 2

We consider the new divisor 4 and the new remainder 2,and apply the division lemma to get

4 = 2 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 24 and 182 is 2

Notice that 2 = HCF(4,2) = HCF(10,4) = HCF(14,10) = HCF(24,14) = HCF(182,24) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 767 > 2, we apply the division lemma to 767 and 2, to get

767 = 2 x 383 + 1

Step 2: Since the reminder 2 ≠ 0, we apply division lemma to 1 and 2, to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 2 and 767 is 1

Notice that 1 = HCF(2,1) = HCF(767,2) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 216, 168, 182, 767 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 216, 168, 182, 767?

Answer: HCF of 216, 168, 182, 767 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 216, 168, 182, 767 using Euclid's Algorithm?

Answer: For arbitrary numbers 216, 168, 182, 767 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.