Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 2174, 9059 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 2174, 9059 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 2174, 9059 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 2174, 9059 is 1.
HCF(2174, 9059) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 2174, 9059 is 1.
Step 1: Since 9059 > 2174, we apply the division lemma to 9059 and 2174, to get
9059 = 2174 x 4 + 363
Step 2: Since the reminder 2174 ≠ 0, we apply division lemma to 363 and 2174, to get
2174 = 363 x 5 + 359
Step 3: We consider the new divisor 363 and the new remainder 359, and apply the division lemma to get
363 = 359 x 1 + 4
We consider the new divisor 359 and the new remainder 4,and apply the division lemma to get
359 = 4 x 89 + 3
We consider the new divisor 4 and the new remainder 3,and apply the division lemma to get
4 = 3 x 1 + 1
We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get
3 = 1 x 3 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 2174 and 9059 is 1
Notice that 1 = HCF(3,1) = HCF(4,3) = HCF(359,4) = HCF(363,359) = HCF(2174,363) = HCF(9059,2174) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 2174, 9059?
Answer: HCF of 2174, 9059 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 2174, 9059 using Euclid's Algorithm?
Answer: For arbitrary numbers 2174, 9059 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.